AttributeEncoder.cpp 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/* The copyright in this software is being made available under the BSD
 * Licence, included below.  This software may be subject to other third
 * party and contributor rights, including patent rights, and no such
 * rights are granted under this licence.
 *
 * Copyright (c) 2017-2018, ISO/IEC
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * * Redistributions of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 *
 * * Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 *
 * * Neither the name of the ISO/IEC nor the names of its contributors
 *   may be used to endorse or promote products derived from this
 *   software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include "AttributeEncoder.h"

namespace pcc {

//============================================================================
// An encapsulation of the entropy coding methods used in attribute coding

struct PCCResidualsEncoder {
  uint32_t alphabetSize;
  o3dgc::Arithmetic_Codec arithmeticEncoder;
  o3dgc::Static_Bit_Model binaryModel0;
  o3dgc::Adaptive_Bit_Model binaryModelDiff0;
  o3dgc::Adaptive_Data_Model multiSymbolModelDiff0;
  o3dgc::Adaptive_Bit_Model binaryModelDiff1;
  o3dgc::Adaptive_Data_Model multiSymbolModelDiff1;

  PCCResidualsEncoder() { alphabetSize = 0; }

  void start(PCCBitstream &bitstream, const uint32_t alphabetSize = 64);
  uint32_t stop();
  inline void encode0(const uint32_t value);
  inline void encode1(const uint32_t value);
};

//----------------------------------------------------------------------------

void PCCResidualsEncoder::start(
  PCCBitstream &bitstream, const uint32_t alphabetSize
) {
  this->alphabetSize = alphabetSize;
  multiSymbolModelDiff0.set_alphabet(alphabetSize + 1);
  binaryModelDiff0.reset();
  multiSymbolModelDiff1.set_alphabet(alphabetSize + 1);
  binaryModelDiff1.reset();
  arithmeticEncoder.set_buffer(
    static_cast<uint32_t>(bitstream.capacity - bitstream.size),
    bitstream.buffer + bitstream.size
  );
  arithmeticEncoder.start_encoder();
}

//----------------------------------------------------------------------------

uint32_t PCCResidualsEncoder::stop() {
  return arithmeticEncoder.stop_encoder();
}

//----------------------------------------------------------------------------

inline void PCCResidualsEncoder::encode0(const uint32_t value) {
  if (value < alphabetSize) {
    arithmeticEncoder.encode(value, multiSymbolModelDiff0);
  } else {
    arithmeticEncoder.encode(alphabetSize, multiSymbolModelDiff0);
    arithmeticEncoder.ExpGolombEncode(
      value - alphabetSize, 0, binaryModel0, binaryModelDiff0);
  }
}

//----------------------------------------------------------------------------

inline void PCCResidualsEncoder::encode1(const uint32_t value) {
  if (value < alphabetSize) {
    arithmeticEncoder.encode(value, multiSymbolModelDiff1);
  } else {
    arithmeticEncoder.encode(alphabetSize, multiSymbolModelDiff1);
    arithmeticEncoder.ExpGolombEncode(
      value - alphabetSize, 0, binaryModel0, binaryModelDiff1);
  }
}

//============================================================================
// AttributeEncoder Members

void AttributeEncoder::buildPredictors(
  const PCCAttributeEncodeParamaters &attributeParams,
  const PCCPointSet3 &pointCloud
) {
  std::vector<uint32_t> numberOfPointsPerLOD;
  std::vector<uint32_t> indexes;
  PCCBuildPredictors(
    pointCloud, attributeParams.numberOfNearestNeighborsInPrediction,
    attributeParams.levelOfDetailCount, attributeParams.dist2,
    predictors, numberOfPointsPerLOD, indexes);

  for (auto &predictor : predictors) {
    predictor.computeWeights(
      attributeParams.numberOfNearestNeighborsInPrediction);
  }
}

//----------------------------------------------------------------------------

int AttributeEncoder::encodeHeader(
  const PCCAttributeEncodeParamaters &attributeParams,
  const std::string &attributeName,
  PCCBitstream &bitstream
) const {
  PCCWriteToBuffer<uint8_t>(
    uint8_t(attributeParams.numberOfNearestNeighborsInPrediction),
    bitstream.buffer, bitstream.size);

  PCCWriteToBuffer<uint8_t>(
    uint8_t(attributeParams.levelOfDetailCount),
    bitstream.buffer, bitstream.size);

  for (size_t lodIndex = 0; lodIndex < attributeParams.levelOfDetailCount; ++lodIndex) {
    const uint32_t d2 = uint32_t(attributeParams.dist2[lodIndex]);
    PCCWriteToBuffer<uint32_t>(d2, bitstream.buffer, bitstream.size);
  }
  for (size_t lodIndex = 0; lodIndex < attributeParams.levelOfDetailCount; ++lodIndex) {
    const uint32_t qs = uint32_t(attributeParams.quantizationSteps[lodIndex]);
    PCCWriteToBuffer<uint32_t>(qs, bitstream.buffer, bitstream.size);
  }
  return 0;
}

//----------------------------------------------------------------------------

int AttributeEncoder::encodeReflectances(
  const PCCAttributeEncodeParamaters &reflectanceParams,
  PCCPointSet3 &pointCloud,
  PCCBitstream &bitstream
) {
  uint64_t startSize = bitstream.size;
  bitstream.size += 4;  // placehoder for bitstream size
  PCCResidualsEncoder encoder;
  const uint32_t alphabetSize = 64;
  encoder.start(bitstream, alphabetSize);

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
  encodeReflectancesIntegerLift(reflectanceParams, pointCloud, encoder);

  uint32_t compressedBitstreamSize = encoder.stop();
  bitstream.size += compressedBitstreamSize;
  PCCWriteToBuffer<uint32_t>(compressedBitstreamSize, bitstream.buffer, startSize);
  return 0;
}

//----------------------------------------------------------------------------

int AttributeEncoder::encodeColors(
  const PCCAttributeEncodeParamaters &colorParams,
  PCCPointSet3 &pointCloud,
  PCCBitstream &bitstream
) {
  uint64_t startSize = bitstream.size;
  bitstream.size += 4;  // placehoder for bitstream size
  PCCResidualsEncoder encoder;
  const uint32_t alphabetSize = 64;
  encoder.start(bitstream, alphabetSize);

  encodeColorsIntegerLift(colorParams, pointCloud, encoder);

  uint32_t compressedBitstreamSize = encoder.stop();
  bitstream.size += compressedBitstreamSize;
  PCCWriteToBuffer<uint32_t>(compressedBitstreamSize, bitstream.buffer, startSize);
  return 0;
}

//----------------------------------------------------------------------------

void AttributeEncoder::encodeReflectancesIntegerLift(
  const PCCAttributeEncodeParamaters &reflectanceParams,
  PCCPointSet3 &pointCloud,
  PCCResidualsEncoder &encoder
) {
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
  const size_t pointCount = predictors.size();
  for (size_t predictorIndex = 0; predictorIndex < pointCount; ++predictorIndex) {
    const auto &predictor = predictors[predictorIndex];
    const size_t lodIndex = predictor.levelOfDetailIndex;
    const int64_t qs = reflectanceParams.quantizationSteps[lodIndex];

    const int64_t quantAttValue = pointCloud.getReflectance(predictor.index);
    const int64_t quantPredAttValue = predictor.predictReflectance(pointCloud);
    const int64_t delta = PCCQuantization(quantAttValue - quantPredAttValue, qs);
    const uint32_t attValue0 = uint32_t(o3dgc::IntToUInt(long(delta)));
    const int64_t reconstructedDelta = PCCInverseQuantization(delta, qs);
    const int64_t reconstructedQuantAttValue = quantPredAttValue + reconstructedDelta;
    const uint16_t reconstructedReflectance = uint16_t(PCCClip(
        reconstructedQuantAttValue, int64_t(0), int64_t(std::numeric_limits<uint16_t>::max())));
    encoder.encode0(attValue0);
    pointCloud.setReflectance(predictor.index, reconstructedReflectance);
  }
}

//----------------------------------------------------------------------------

223
void AttributeEncoder::encodeColorsIntegerLift(
224
225
  const PCCAttributeEncodeParamaters &colorParams,
  PCCPointSet3 &pointCloud,
226
  PCCResidualsEncoder &encoder
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
) {
  const size_t pointCount = predictors.size();
  for (size_t predictorIndex = 0; predictorIndex < pointCount; ++predictorIndex) {
    const auto &predictor = predictors[predictorIndex];
    const PCCColor3B color = pointCloud.getColor(predictor.index);
    const PCCColor3B predictedColor = predictor.predictColor(pointCloud);
    const size_t lodIndex = predictor.levelOfDetailIndex;
    const int64_t qs = colorParams.quantizationSteps[lodIndex];
    const int64_t quantAttValue = color[0];
    const int64_t quantPredAttValue = predictedColor[0];
    const int64_t delta = PCCQuantization(quantAttValue - quantPredAttValue, qs);
    const uint32_t attValue0 = uint32_t(o3dgc::IntToUInt(long(delta)));
    const int64_t reconstructedDelta = PCCInverseQuantization(delta, qs);
    const int64_t reconstructedQuantAttValue = quantPredAttValue + reconstructedDelta;
    encoder.encode0(attValue0);
    PCCColor3B reconstructedColor;
    reconstructedColor[0] =
        uint8_t(PCCClip(reconstructedQuantAttValue, int64_t(0), int64_t(255)));
    for (size_t k = 1; k < 3; ++k) {
      const int64_t quantAttValue = color[k];
      const int64_t quantPredAttValue = predictedColor[k];
      const int64_t delta = PCCQuantization(quantAttValue - quantPredAttValue, qs);
      const int64_t reconstructedDelta = PCCInverseQuantization(delta, qs);
      const int64_t reconstructedQuantAttValue = quantPredAttValue + reconstructedDelta;
      const uint32_t attValue1 = uint32_t(o3dgc::IntToUInt(long(delta)));
      encoder.encode1(attValue1);
      reconstructedColor[k] =
          uint8_t(PCCClip(reconstructedQuantAttValue, int64_t(0), int64_t(255)));
    }
    pointCloud.setColor(predictor.index, reconstructedColor);
  }
}

//============================================================================

} /* namespace pcc */